Amazon cover image
Image from Amazon.com

Polymer composites Volume 1 / edited by Sabu Thomas [and others].

Contributor(s): Material type: TextTextPublication details: Weinheim : Wiley-VCH, 2012.Description: 1 online resource (xxxi, 814 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527645237
  • 3527645233
  • 9783527645213
  • 3527645217
  • 3527326243
  • 9783527326242
Other title:
  • Polymer composites. Volume 1, Macro- and microcomposites
Subject(s): Genre/Form: Additional physical formats: Print version:: Polymer Composites, Macro- and Microcomposites : Macro- and Microcomposites.DDC classification:
  • 620.192 23
LOC classification:
  • TA418.9.C6 P659 2012eb
Online resources:
Contents:
Polymer Composites; Contents; The Editors; Preface; List of Contributors; Part One: Introduction to Polymer Composites; 1 Advances in Polymer Composites: Macro- and Microcomposites -- State of the Art, New Challenges, and Opportunities; 1.1 Introduction; 1.2 Classification of Composites; 1.2.1 Polymer Matrix Composites; 1.2.1.1 Factors Affecting Properties of PMCs; 1.2.1.2 Fabrication of Composites; 1.2.1.3 Applications; 1.2.1.4 Recent Advances in Polymer Composites; 1.3 Interface Characterization; 1.3.1 Micromechanical Technique; 1.3.2 Spectroscopic Tests; 1.3.3 Microscopic Techniques.
1.3.4 Thermodynamic Methods1.4 New Challenges and Opportunities; References; 2 Shock and Impact Response of Glass Fiber-Reinforced Polymer Composites; 2.1 Introduction; 2.2 Analytical Analysis; 2.2.1 Wave Propagation in Elastic-Viscoelastic Bilaminates; 2.2.2 Solution at Wave Front: Elastic Precursor Decay; 2.2.3 Late-Time Asymptotic Solution; 2.3 Plate-Impact Experiments on GRPs; 2.3.1 Material: Glass Fiber-Reinforced Polymer; 2.3.2 Plate-Impact Shock Compression Experiments: Experimental Configuration.
2.3.2.1 t-X Diagram (Time versus Distance) and S-V Diagram (Stress versus Velocity) for Plate-Impact Shock Compression Experiments2.3.3 Plate-Impact Spall Experiments: Experimental Configuration; 2.3.3.1 t-X Diagram (Time versus Distance) and S-V Diagram (Stress versus Velocity) for Plate-Impact Spall Experiments; 2.3.4 Shock-Reshock and Shock-Release Experiments: Experimental Configuration; 2.3.4.1 t-X Diagram (Time versus Distance) for Shock-Reshock and Shock-Release Experiments; 2.4 Target Assembly; 2.5 Experimental Results and Discussion; 2.5.1 Plate-Impact Shock Compression Experiments.
2.5.1.1 Structure of Shock Waves in the GRP2.5.1.2 Equation of State (Shock Velocity versus Particle Velocity) for S2-Glass GRP; 2.5.1.3 Hugoniot Stress versus Hugoniot Strain (Hugoniot); 2.5.1.4 Hugoniot Stress versus Particle Velocity; 2.5.2 Plate-Impact Spall Experiments; 2.5.2.1 Determination of Spall Strength; 2.5.2.2 Spall Strength of GRP Following Normal Shock Compression; 2.5.2.3 Spall Strength of GRP Following Combined Shock Compression and Shear Loading; 2.5.3 Shock-Reshock and Shock-Release Experiments.
2.5.3.1 Self Consistent Method for the Determination of Dynamic Shear Yield Strength2.5.3.2 Calculation of Initial Hugoniot Shocked State and Hugoniot Stress-Strain Curve; 2.5.3.3 Calculation of Off-Hugoniot States for Reshock-Release Loading; 2.5.3.4 Determination of the Critical Shear Strength in the Shocked State for S2-Glass GRP; 2.6 Summary; References; 3 Interfaces in Macro- and Microcomposites; 3.1 Introduction; 3.2 Characterization of Interfaces in Macro- and Microcomposites; 3.2.1 Surface Treatments of Reinforcements for Composite Materials; 3.2.2 Microscale Tests.
Summary: The first systematic reference on the topic with an emphasis on the characteristics and dimension of the reinforcement. This first of three volumes, authored by leading researchers in the field from academia, government, industry, as well as private research institutions around the globe, focuses on macro and micro composites. Clearly divided into three sections, the first offers an introduction to polymer composites, discussing the state of the art, new challenges, and opportunities of various polymer composite systems, as well as preparation and manufacturing techniques. The second part.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Includes bibliographical references and index.

Polymer Composites; Contents; The Editors; Preface; List of Contributors; Part One: Introduction to Polymer Composites; 1 Advances in Polymer Composites: Macro- and Microcomposites -- State of the Art, New Challenges, and Opportunities; 1.1 Introduction; 1.2 Classification of Composites; 1.2.1 Polymer Matrix Composites; 1.2.1.1 Factors Affecting Properties of PMCs; 1.2.1.2 Fabrication of Composites; 1.2.1.3 Applications; 1.2.1.4 Recent Advances in Polymer Composites; 1.3 Interface Characterization; 1.3.1 Micromechanical Technique; 1.3.2 Spectroscopic Tests; 1.3.3 Microscopic Techniques.

1.3.4 Thermodynamic Methods1.4 New Challenges and Opportunities; References; 2 Shock and Impact Response of Glass Fiber-Reinforced Polymer Composites; 2.1 Introduction; 2.2 Analytical Analysis; 2.2.1 Wave Propagation in Elastic-Viscoelastic Bilaminates; 2.2.2 Solution at Wave Front: Elastic Precursor Decay; 2.2.3 Late-Time Asymptotic Solution; 2.3 Plate-Impact Experiments on GRPs; 2.3.1 Material: Glass Fiber-Reinforced Polymer; 2.3.2 Plate-Impact Shock Compression Experiments: Experimental Configuration.

2.3.2.1 t-X Diagram (Time versus Distance) and S-V Diagram (Stress versus Velocity) for Plate-Impact Shock Compression Experiments2.3.3 Plate-Impact Spall Experiments: Experimental Configuration; 2.3.3.1 t-X Diagram (Time versus Distance) and S-V Diagram (Stress versus Velocity) for Plate-Impact Spall Experiments; 2.3.4 Shock-Reshock and Shock-Release Experiments: Experimental Configuration; 2.3.4.1 t-X Diagram (Time versus Distance) for Shock-Reshock and Shock-Release Experiments; 2.4 Target Assembly; 2.5 Experimental Results and Discussion; 2.5.1 Plate-Impact Shock Compression Experiments.

2.5.1.1 Structure of Shock Waves in the GRP2.5.1.2 Equation of State (Shock Velocity versus Particle Velocity) for S2-Glass GRP; 2.5.1.3 Hugoniot Stress versus Hugoniot Strain (Hugoniot); 2.5.1.4 Hugoniot Stress versus Particle Velocity; 2.5.2 Plate-Impact Spall Experiments; 2.5.2.1 Determination of Spall Strength; 2.5.2.2 Spall Strength of GRP Following Normal Shock Compression; 2.5.2.3 Spall Strength of GRP Following Combined Shock Compression and Shear Loading; 2.5.3 Shock-Reshock and Shock-Release Experiments.

2.5.3.1 Self Consistent Method for the Determination of Dynamic Shear Yield Strength2.5.3.2 Calculation of Initial Hugoniot Shocked State and Hugoniot Stress-Strain Curve; 2.5.3.3 Calculation of Off-Hugoniot States for Reshock-Release Loading; 2.5.3.4 Determination of the Critical Shear Strength in the Shocked State for S2-Glass GRP; 2.6 Summary; References; 3 Interfaces in Macro- and Microcomposites; 3.1 Introduction; 3.2 Characterization of Interfaces in Macro- and Microcomposites; 3.2.1 Surface Treatments of Reinforcements for Composite Materials; 3.2.2 Microscale Tests.

The first systematic reference on the topic with an emphasis on the characteristics and dimension of the reinforcement. This first of three volumes, authored by leading researchers in the field from academia, government, industry, as well as private research institutions around the globe, focuses on macro and micro composites. Clearly divided into three sections, the first offers an introduction to polymer composites, discussing the state of the art, new challenges, and opportunities of various polymer composite systems, as well as preparation and manufacturing techniques. The second part.