000 06254cam a2200601Ii 4500
001 ocn908685727
003 OCoLC
005 20230823095408.0
006 m o d
007 cr cnu|||unuuu
008 150511s2015 gw ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dIDEBK
_dDG1
_dRECBK
_dCDX
_dCOO
_dVRC
_dUPM
_dDEBSZ
_dDEBBG
020 _a9783527667352
_qelectronic bk.
020 _a3527667350
_qelectronic bk.
020 _a9783527667383
_qelectronic bk.
020 _a3527667385
_qelectronic bk.
020 _z9783527334230
020 _a3527334238
020 _a9783527334230
029 1 _aAU@
_b000055511298
029 1 _aDEBSZ
_b453343805
029 1 _aDEBBG
_bBV042991527
029 1 _aDEBBG
_bBV043397778
035 _a(OCoLC)908685727
050 4 _aTA403
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
082 0 4 _a620.1/1
_223
049 _aMAIN
100 1 _aLeitsmann, Roman,
_eauthor.
245 1 0 _aIn-vitro materials design :
_bmodern atomistic simulation methods for engineers /
_cRoman Leitsmann, Philipp Plänitz, and Michael Schreiber.
264 1 _aWeinheim, Germany :
_bWiley-VCH,
_c[2015]
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 0 _aVendor-supplied metadata.
505 0 _aMachine generated contents note: pt. I Basic Physical and Mathematical Principles -- 1.Introduction -- 2.Newtonian Mechanics and Thermodynamics -- 2.1.Equation of Motion -- 2.2.Energy Conservation -- 2.3.Many Body Systems -- 2.4.Thermodynamics -- 3.Operators and Fourier Transformations -- 3.1.Complex Numbers -- 3.2.Operators -- 3.3.Fourier Transformation -- 4.Quantum Mechanical Concepts -- 4.1.Heuristic Derivation -- 4.2.Stationary Schrodinger Equation -- 4.3.Expectation Value and Uncertainty Principle -- 5.Chemical Properties and Quantum Theory -- 5.1.Atomic Model -- 5.2.Molecular Orbital Theory -- 6.Crystal Symmetry and Bravais Lattice -- 6.1.Symmetry in Nature -- 6.2.Symmetry in Molecules -- 6.3.Symmetry in Crystals -- 6.4.Bloch Theorem and Band Structure -- pt. II Computational Methods -- 7.Introduction -- 8.Classical Simulation Methods -- 8.1.Molecular Mechanics -- 8.2.Simple Force-Field Approach -- 8.3.Reactive Force-Field Approach -- 9.Quantum Mechanical Simulation Methods -- 9.1.Born -- Oppenheimer Approximation and Pseudopotentials -- 9.2.Hartree -- Fock Method -- 9.3.Density Functional Theory -- 9.4.Meaning of the Single-Electron Energies within DFT and HF -- 9.5.Approximations for the Exchange -- Correlation Functional Exc -- 9.5.1.Local Density Approximation -- 9.5.2.Generalized Gradient Approximation -- 9.5.3.Hybrid Functionals -- 9.6.Wave Function Representations -- 9.6.1.Real-Space Representation -- 9.6.2.Plane Wave Representation -- 9.6.3.Local Basis Sets -- 9.6.4.Combined Basis Sets -- 9.7.Concepts Beyond HF and DFT -- 9.7.1.Quasiparticle Shift and the GW Approximation -- 9.7.2.Scissors Shift -- 9.7.3.Excitonic Effects -- 9.7.4.TDDFT -- 9.7.5.Post-Hartree -- Fock Methods -- 9.7.5.1.Configuration Interaction (CI) -- 9.7.5.2.Coupled Cluster (CC) -- 9.7.5.3.Møller -- Plesset Perturbation Theory (MPn) -- 10.Multiscale Approaches -- 10.1.Coarse-Grained Approaches -- 10.2.QM/MM Approaches -- 11.Chemical Reactions -- 11.1.Transition State Theory -- 11.2.Nudged Elastic Band Method -- pt. III Industrial Applications -- 12.Introduction -- 13.Microelectronic CMOS Technology -- 13.1.Introduction -- 13.2.Work Function Tunability in High-K Gate Stacks -- 13.2.1.Concrete Problem and Goal -- 13.2.2.Simulation Approach -- 13.2.3.Modeling of the Bulk Materials -- 13.2.4.Construction of the HKMG Stack Model -- 13.2.5.Calculation of the Band Alignment -- 13.2.6.Simulation Results and Practical Impact -- 13.3.Influence of Defect States in High-K Gate Stacks -- 13.3.1.Concrete Problem and Goal -- 13.3.2.Simulation Approach and Model System -- 13.3.3.Calculation of the Charge Transition Level -- 13.3.4.Simulation Results and Practical Impact -- 13.4.Ultra-Low-K Materials in the Back-End-of-Line -- 13.4.1.Concrete Problem and Goal -- 13.4.2.Simulation Approach -- 13.4.3.The Silylation Process: Preliminary Considerations -- 13.4.4.Simulation Results and Practical Impact -- 14.Modeling of Chemical Processes -- 14.1.Introduction -- 14.2.GaN Crystal Growth -- 14.2.1.Concrete Problem and Goal -- 14.2.2.Simulation Approach -- 14.2.3.ReaxFF Parameter Training Scheme -- 14.2.4.Set of Training Structures: ab initio Modeling -- 14.2.5.Model System for the Growth Simulations -- 14.2.6.Results and Practical Impact -- 14.3.Intercalation of Ions into Cathode Materials -- 14.3.1.Concrete Problem and Goal -- 14.3.2.Simulation Approach -- 14.3.3.Calculation of the Cell Voltage -- 14.3.4.Obtained Structural Properties of Lix V2 O5 -- 14.3.5.Results for the Cell Voltage -- 15.Properties of Nanostructured Materials -- 15.1.Introduction -- 15.2.Embedded PbTe Quantum Dots -- 15.2.1.Concrete Problem and Goal -- 15.2.2.Simulation Approach -- 15.2.3.Equilibrium Crystal Shape and Wulff Construction -- 15.2.4.Modeling of the Embedded PbTe Quantum Dots -- 15.2.5.Obtained Structural Properties -- 15.2.6.Internal Electric Fields and the Quantum Confined Stark Effect -- 15.3.Nanomagnetism -- 15.3.1.Concrete Problem and Goal -- 15.3.2.Construction of the Silicon Quantum Dots -- 15.3.3.Ab initio Simulation Approach -- 15.3.4.Calculation of the Formation Energy -- 15.3.5.Resulting Stability Properties -- 15.3.6.Obtained Magnetic Properties.
650 0 _aMaterials science.
650 0 _aMaterials
_xDesign.
650 0 _aMaterials
_xSimulation methods.
650 0 _aMaterials
_xModels.
650 7 _aTECHNOLOGY & ENGINEERING / Engineering (General)
_2bisacsh
650 7 _aTECHNOLOGY & ENGINEERING / Reference
_2bisacsh
655 4 _aElectronic books.
700 1 _aPlanitz, Philipp,
_eauthor.
700 1 _aSchreiber, Michael,
_d1954-
_eauthor.
776 0 8 _iErscheint auch als:
_aLeitsmann, Roman, 1979
_tIn-vitro materials design
856 4 0 _uhttp://dx.doi.org/10.1002/9783527667352
_zWiley Online Library
994 _a92
_bDG1
999 _c18918
_d18877
526 _bps