000 06160cam a2200901Mi 4500
001 ocn830161892
003 OCoLC
005 20230823095423.0
006 m o d
007 cr cnu---unuuu
008 130316s2013 enk ob 001 0 eng d
040 _aEBLCP
_beng
_epn
_cEBLCP
_dYDXCP
_dDG1
_dOCLCF
_dOCLCQ
_dOCLCO
_dCOO
_dDEBSZ
_dN$T
_dCDX
_dIDEBK
_dE7B
_dUMI
_dUKDOC
_dDEBBG
_dDKDLA
_dOCLCQ
_dLOA
_dDG1
_dOCLCQ
019 _a830512377
_a839305462
_a875001632
_a913841045
_a960200500
020 _a9781118562352
_q(electronic bk.)
020 _a1118562356
_q(electronic bk.)
020 _a1118614003
020 _a9781118614006
020 _a9781118614228
_q(electronic bk.)
020 _a1118614224
_q(electronic bk.)
020 _a9781299314924
_q(MyiLibrary)
020 _a1299314929
_q(MyiLibrary)
020 _z9781118614006
020 _z1118614003
020 _z9781848213913
020 _z1848213913
029 1 _aAU@
_b000051629371
029 1 _aCHBIS
_b010026694
029 1 _aCHVBK
_b306241072
029 1 _aDEBBG
_bBV041911175
029 1 _aDEBBG
_bBV042032031
029 1 _aDEBSZ
_b414174984
029 1 _aDEBSZ
_b431355991
029 1 _aDEBSZ
_b449349446
029 1 _aDKDLA
_b820120-katalog:000696554
029 1 _aNZ1
_b15915823
029 1 _aNZ1
_b16097844
035 _a(OCoLC)830161892
_z(OCoLC)830512377
_z(OCoLC)839305462
_z(OCoLC)875001632
_z(OCoLC)913841045
_z(OCoLC)960200500
037 _a462742
_bMIL
050 4 _aTK454.4.E5
072 7 _aSCI
_x021000
_2bisacsh
072 7 _aSCI
_x022000
_2bisacsh
082 0 4 _a537.01515
049 _aMAIN
100 1 _aSaguet, Pierre.
245 1 0 _aNumerical Analysis in Electromagnetics :
_bthe TLM Method.
260 _aLondon :
_bWiley,
_c2013.
300 _a1 online resource (186 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aISTE
588 0 _aPrint version record.
505 0 _aCover; Numerical Analysis in Electromagnetics; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Basis of the TLM Method: the 2D TLM Method; 1.1. Historical introduction; 1.2. 2D simulation; 1.2.1. Parallel node; 1.2.2. Series node; 1.2.3. Simulation of inhomogeneous media with losses; 1.2.4. Scattering matrices; 1.2.5. Boundary conditions; 1.2.6. Dielectric interface passage conditions; 1.2.7. Dispersion of 2D nodes; 1.3. The TLM process; 1.3.1. Basic algorithm; 1.3.2. Excitation; 1.3.3. Output signal processing; Chapter 2. 3D Nodes; 2.1. Historical development.
505 8 _a2.1.1. Distributed nodes2.1.2. Asymmetrical condensed node (ACN); 2.1.3. The symmetrical condensed node (SCN); 2.1.4. Other types of nodes; 2.2. The generalized condensed node; 2.2.1. General description; 2.2.2. Derivation of 3D TLM nodes; 2.2.3. Scattering matrices; 2.3. Time step; 2.4. Dispersion of 3D nodes; 2.4.1. Theoretical study in simple cases; 2.4.2. Case of inhomogeneous media; 2.5. Absorbing walls; 2.5.1. Matched impedance; 2.5.2. Segmentation techniques; 2.5.3. Perfectly matched layers; 2.5.4. Optimization of the PML layer profile; 2.5.5. Anisotropic and dispersive layers.
505 8 _a2.5.6. Conclusion2.6. Orthogonal curvilinear mesh; 2.6.1. 3D TLM curvilinear cell; 2.6.2. The TLM algorithm; 2.6.3. Scattering matrices for curvilinear nodes; 2.6.4. Stability conditions and the time step; 2.6.5. Validation of the algorithm; 2.7. Non-Cartesian nodes; Chapter 3. Introduction of Discrete Elements and Thin Wires in the TLM Method; 3.1. Introduction of discrete elements; 3.1.1. History of 2D TLM; 3.1.2. 3D TLM; 3.1.3. Application example: modeling of a p-n diode; 3.2. Introduction of thin wires; 3.2.1. Arbitrarily oriented thin wire model.
505 8 _a3.2.2. Validation of the arbitrarily oriented thin wire modelChapter 4. The TLM Method in Matrix Form and the Z Transform; 4.1. Introduction; 4.2. Matrix form of Maxwell's equations; 4.3. Cubic mesh normalized Maxwell's equations; 4.4. The propagation process; 4.5. Wave-matter interaction; 4.6. The normalized parallelepipedic mesh Maxwell's equations; 4.7. Application example: plasma modeling; 4.7.1. Theoretical model; 4.7.2. Validation of the TLM simulation; 4.8. Conclusion; APPENDICES; Appendix A. Development of Maxwell's Equations using the Z Transform with a Variable Mesh.
505 8 _aAppendix B. Treatment of Plasma using the Z Transform for the TLM MethodBibliography; Index.
520 _aThe aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general. The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been.
504 _aIncludes bibliographical references (pages 161-169) and index.
650 0 _aElectromagnetism
_xMathematical models.
650 0 _aTime-domain analysis.
650 0 _aNumerical analysis.
650 0 _aElectrical engineering
_xMathematics.
650 4 _aElectrical engineering
_xMathematics.
650 4 _aElectromagnetism
_xMathematical models.
650 7 _aSCIENCE
_xPhysics
_xElectricity.
_2bisacsh
650 7 _aSCIENCE
_xPhysics
_xElectromagnetism.
_2bisacsh
650 7 _aElectrical engineering
_xMathematics.
_2fast
_0(OCoLC)fst01728625
650 7 _aElectromagnetism
_xMathematical models.
_2fast
_0(OCoLC)fst00906599
650 7 _aNumerical analysis.
_2fast
_0(OCoLC)fst01041273
650 7 _aTime-domain analysis.
_2fast
_0(OCoLC)fst01151183
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aSaguet, Pierre.
_tNumerical Analysis in Electromagnetics : The TLM Method.
_dLondon : Wiley, ©2013
_z9781848213913
830 0 _aISTE.
856 4 0 _uhttp://dx.doi.org/10.1002/9781118562352
_zWiley Online Library
994 _a92
_bDG1
999 _c20319
_d20278
526 _bps