000 | 07084cam a2200865 i 4500 | ||
---|---|---|---|
001 | ocn878051089 | ||
003 | OCoLC | ||
005 | 20230823095259.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 140422s2014 nju ob 001 0 eng | ||
010 | _a 2014016123 | ||
040 |
_aDLC _beng _erda _epn _cDLC _dYDX _dN$T _dEBLCP _dYDXCP _dOCLCF _dDG1 _dUMI _dE7B _dOCLCO _dCOO _dDEBBG _dOCLCQ _dDEBSZ _dB24X7 _dVT2 _dDG1 _dCOCUF _dDG1 _dMOR _dLIP _dPIFAG _dZCU _dLIV _dMERUC |
||
066 | _cZsym | ||
019 |
_a891397879 _a903257921 _a913462197 _a927509113 _a961585666 _a962644700 |
||
020 |
_a9781118914540 _q(ePub) |
||
020 |
_a1118914546 _q(ePub) |
||
020 |
_a9781118914557 _q(Adobe PDF) |
||
020 |
_a1118914554 _q(Adobe PDF) |
||
020 | _a9781118914564 | ||
020 | _a1118914562 | ||
020 |
_z9781118315231 _q(hardback) |
||
020 |
_z1118315235 _q(hardback) |
||
029 | 1 |
_aCHBIS _b010259798 |
|
029 | 1 |
_aCHVBK _b325941033 |
|
029 | 1 |
_aDEBBG _bBV042487511 |
|
029 | 1 |
_aNZ1 _b15920915 |
|
029 | 1 |
_aDEBSZ _b431744548 |
|
029 | 1 |
_aDEBSZ _b434829099 |
|
029 | 1 |
_aDEBSZ _b449440737 |
|
029 | 1 |
_aAU@ _b000052794990 |
|
029 | 1 |
_aDEBBG _bBV044069807 |
|
029 | 1 |
_aCHVBK _b480232423 |
|
029 | 1 |
_aCHNEW _b000943025 |
|
029 | 1 |
_aDEBSZ _b485047659 |
|
035 |
_a(OCoLC)878051089 _z(OCoLC)891397879 _z(OCoLC)903257921 _z(OCoLC)913462197 _z(OCoLC)927509113 _z(OCoLC)961585666 _z(OCoLC)962644700 |
||
037 |
_aCL0500000553 _bSafari Books Online |
||
042 | _apcc | ||
050 | 0 | 0 | _aTK7882.P3 |
072 | 7 |
_aCOM _x000000 _2bisacsh |
|
082 | 0 | 0 |
_a006.4 _223 |
084 |
_aTEC015000 _aCOM016000 _aCOM021030 _2bisacsh |
||
049 | _aMAIN | ||
100 | 1 |
_aKuncheva, Ludmila I. _q(Ludmila Ilieva), _d1959- |
|
245 | 1 | 0 |
_aCombining pattern classifiers : _bmethods and algorithms / _cLudmila I. Kuncheva. |
250 | _aSecond edition. | ||
264 | 1 |
_aHoboken, NJ : _bWiley, _c2014. |
|
300 | _a1 online resource (xxi, 357 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
520 |
_a"Combined classifiers, which are central to the ubiquitous performance of pattern recognition and machine learning, are generally considered more accurate than single classifiers. In a didactic, detailed assessment, Combining Pattern Classifiers examines the basic theories and tactics of classifier combination while presenting the most recent research in the field. Among the pattern recognition tasks that this book explores are mail sorting, face recognition, signature verification, decoding brain fMRI images, identifying emotions, analyzing gene microarray data, and spotting patterns in consumer preference. This updated second edition is equipped with the latest knowledge for academics, students, and practitioners involved in pattern recognition fields"-- _cProvided by publisher. |
||
520 |
_a"Classifier Combination is a field of growing interest within the very large area of Pattern Classification"-- _cProvided by publisher. |
||
588 | 0 | _aPrint version record and CIP data provided by publisher. | |
505 | 0 | _a""Titlepage""; ""Copyright""; ""Dedication""; ""Preface""; ""The Playing Field""; ""Software""; ""Structure and What is New in the Second Edition""; ""Who is This Book For?""; ""Notes""; ""Acknowledgements""; ""1 Fundamentals of Pattern Recognition""; ""1.1 Basic Concepts: Class, Feature, Data Set""; ""1.2 Classifier, Discriminant Functions, Classification Regions""; ""1.3 Classification Error and Classification Accuracy""; ""1.4 Experimental Comparison of Classifiers""; ""1.5 Bayes Decision Theory""; ""1.6 Clustering and Feature Selection""; ""1.7 Challenges of Real-Life Data""; ""Appendix"" | |
505 | 8 | _a""1.A.1 Data Generation""""1.A.2 Comparison of Classifiers""; ""1.A.3 Feature Selection""; ""Notes""; ""2 Base Classifiers""; ""2.1 Linear and Quadratic Classifiers""; ""2.2 Decision Tree Classifiers""; ""2.3 The Na�A�ve Bayes Classifier""; ""2.4 Neural Networks""; ""2.5 Support Vector Machines""; ""2.6 The k-Nearest Neighbor Classifier (k-nn)""; ""2.7 Final Remarks""; ""Appendix""; ""2.A.1 Matlab Code for the Fish Data""; ""2.A.2 Matlab Code for Individual Classifiers""; ""Notes""; ""3 An Overview of the Field""; ""3.1 Philosophy""; ""3.2 Two Examples""; ""3.3 Structure of the Area"" | |
505 | 8 |
_6880-01 _a""5.3 Nontrainable (Fixed) Combination Rules""""5.4 The Weighted Average (Linear Combiner)""; ""5.5 A Classifier as a Combiner""; ""5.6 An Example of Nine Combiners for Continuous-Valued Outputs""; ""5.7 To Train or Not to Train?""; ""Appendix""; ""5.A.1 Theoretical Classification Error for the Simple Combiners""; ""5.A.2 Selected Matlab Code""; ""Notes""; ""6 Ensemble Methods""; ""6.1 Bagging""; ""6.2 Random Forests""; ""6.3 Adaboost""; ""6.4 Random Subspace Ensembles""; ""6.5 Rotation Forest""; ""6.6 Random Linear Oracle""; ""6.7 Error Correcting Output Codes (ECOC)""; ""Appendix"" |
|
505 | 8 | _a""6.A.1 Bagging""""6.A.2 AdaBoost""; ""6.A.3 Random Subspace""; ""6.A.4 Rotation Forest""; ""6.A.5 Random Linear Oracle""; ""6.A.6 Ecoc""; ""Notes""; ""7 Classifier Selection""; ""7.1 Preliminaries""; ""7.2 Why Classifier Selection Works""; ""7.3 Estimating Local Competence Dynamically""; ""7.4 Pre-Estimation of the Competence Regions""; ""7.5 Simultaneous Training of Regions and Classifiers""; ""7.6 Cascade Classifiers""; ""Appendix: Selected Matlab Code""; ""7.A.1 Banana Data""; ""7.A.2 Evolutionary Algorithm for a Selection Ensemble for the Banana Data"" | |
650 | 0 | _aPattern recognition systems. | |
650 | 0 |
_aImage processing _xDigital techniques. |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xImaging Systems. _2bisacsh |
|
650 | 7 |
_aCOMPUTERS _xComputer Vision & Pattern Recognition. _2bisacsh |
|
650 | 7 |
_aCOMPUTERS _xDatabase Management _xData Mining. _2bisacsh |
|
650 | 7 |
_aImage processing _xDigital techniques. _2fast _0(OCoLC)fst00967508 |
|
650 | 7 |
_aPattern recognition systems. _2fast _0(OCoLC)fst01055266 |
|
650 | 4 | _aCOMPUTERS / Computer Vision & Pattern Recognition. | |
655 | 4 | _aElectronic books. | |
655 | 0 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aKuncheva, Ludmila I. (Ludmila Ilieva), 1959- _tCombining pattern classifiers. _bSecond edition. _dHoboken, New Jersey : Wiley, [2014] _z9781118315231 _w(DLC) 2014014214 _w(OCoLC)878050954 |
856 | 4 | 0 | _uhttp://dx.doi.org/10.1002/9781118914564 |
880 | 8 |
_6505-01/Zsym _a""3.4 Quo Vadis?""""Notes""; ""4 Combining Label Outputs""; ""4.1 Types of Classifier Outputs""; ""4.2 A Probabilistic Framework for Combining Label Outputs""; ""4.3 Majority Vote""; ""4.4 Weighted Majority Vote""; ""4.5 Na�A�ve-Bayes Combiner""; ""4.6 Multinomial Methods""; ""4.7 Comparison of Combination Methods for Label�A Outputs""; ""Appendix""; ""4.A.1 Matan�a�"s Proof for the Limits on the Majority Vote�A Accuracy""; ""4.A.2 Selected Matlab Code""; ""Notes""; ""5 Combining Continuous-Valued Outputs""; ""5.1 Decision Profile""; ""5.2 How Do We Get Probability Outputs?"" |
|
994 |
_aC0 _bDG1 |
||
999 |
_c21227 _d21186 |
||
526 | _bgm |